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space of height δ+1 can be embedded in the real line so that it becomes the attractor
of an IFS. On the other hand, we show that a scattered compact metric space of
limit height is never an IFS-attractor.
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1. Introduction

A compact metric space X is called an IFS-attractor if

X =
n⋃

i=1
fi(X)

for some contractions f1, . . . , fn : X → X. The family {f1, . . . , fn} is called an iterated function system
(briefly, an IFS), see [2]. When X is a subset of some Euclidean space, usually it is assumed that the con-
tractions are defined on the entire space. In 1981 Hutchinson showed that for the metric space R

n, every
IFS consisting of contractions has a unique attractor. In fact this theorem holds also for weak contractions
[4]. Let us say that X is a topological IFS-attractor if it is homeomorphic to the attractor of some iterated
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E-mail address: magdalena.nowak805@gmail.com.
0166-8641/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.topol.2013.07.049

http://dx.doi.org/10.1016/j.topol.2013.07.049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:magdalena.nowak805@gmail.com
http://dx.doi.org/10.1016/j.topol.2013.07.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2013.07.049&domain=pdf


1890 M. Nowak / Topology and its Applications 160 (2013) 1889–1901
function system or, in other words, there exists a compatible metric on X such that X becomes an IFS-
attractor. Given a metrizable compact space, it is natural to ask when it is a topological IFS-attractor.
A criterion for connected spaces has already been noted by Hata [4]: A connected IFS-attractor must be lo-
cally connected. Recently, Banakh and the author [1] gave an example of a connected and locally connected
compact subset of the plane that is not a topological IFS-attractor.

On the other hand, a result of Kwieciński [6], later generalized by Sanders [8], shows the existence of
a curve in the plane that is not an IFS-attractor. In other words, the unit interval (which is obviously an
IFS-attractor) has a compatible metric (taken from the plane) such that it fails being an IFS-attractor. In
this direction, Kulczycki and the author [5] gave a general condition on a connected compact space which
implies that it has a compatible metric making it a non-IFS-attractor. Finally, [3] showed that the Cantor
set has a metric such that it fails to be the attractor of even a countable system of contractions.

Motivated by these results, we study topological properties of scattered IFS-attractors. It is easy to see
that each finite set is an IFS-attractor in every metric space. We present an example of a convergent sequence
of real numbers (a countable compact set in R), which is not an IFS-attractor. We further investigate more
complicated scattered compact spaces and classify them with respect to the property of being a topological
IFS-attractor. Namely, we show that every countable compact metric space of successor Cantor–Bendixson
height with a single point of the maximal rank can be embedded topologically in the real line so that it
becomes the attractor of an IFS consisting of two contractions whose Lipschitz constants are as small as we
wish. On the other hand, we show that if a countable compact metric space is a topological IFS-attractor,
then its Cantor–Bendixson height cannot be a limit ordinal.

Combining our results, we get an example of a countable compact metric space K (namely, a space of
height ω+1) which is an IFS-attractor, however some clopen subset of K is not an IFS-attractor, even after
changing its metric to an equivalent one.

2. Preliminaries

Throughout the paper we will use the following standard notation: d will stand for a metric or
for the usual distance on the real line; the distance between sets A,B ⊂ R will be denoted by
dist(A,B) = inf{d(a, b): a ∈ A, b ∈ B} and diamA will denote the diameter of the set A ⊂ R:
diamA = supx,y∈A{d(x, y)}. Let |A| will stand for the number of elements in the set A and A + x be
the set {a + x: a ∈ A}. Finally B(x, r) will denote the open ball of radius r > 0 centered at the point x.
Given a metric space (X, d), a map f : X → X is called a contraction if there exists a constant α ∈ (0, 1)
such that for each x, y ∈ X

d
(
f(x), f(y)

)
� α · d(x, y).

A map f : X → X is called a weak contraction if for each x, y ∈ X, x �= y

d
(
f(x), f(y)

)
< d(x, y).

It is well known that every weak contraction on a compact metric space has a unique fixed point.
We recall some basic notions related to scattered spaces. A topological space X is called scattered iff every

nonempty subspace Y has an isolated point in Y . It is well known that a compact metric space is scattered
iff it is countable. Moreover every compact scattered space is zero-dimensional (has a base consisting of
clopen sets).

For a scattered space X let

X ′ = {x ∈ X: x is an accumulation point of X}
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be the Cantor–Bendixson derivative of X. Inductively define:

• X(α+1) = (X(α))′;
• X(α) =

⋂
β<α X(β) for a limit ordinal α.

In general, the set X(α) \ X(α+1) is called the αth Cantor–Bendixson level of X. For an element x of a
scattered space X, its Cantor–Bendixson rank rk(x) is the unique ordinal α such that x ∈ X(α) \X(α+1).
The height of a scattered space X is

ht(X) = min
{
α: X(α) is discrete

}
.

These are topological invariants of scattered spaces and their elements. By the definitions and transfinite
induction it is easy to prove that for every compact scattered spaces U and V :

• if U ⊂ V then ht(U) � ht(V );
• ht(U ∪ V ) = max(ht(U),ht(V ));
• ht(f(U)) � ht(U) for every continuous function f ;
• ht(U) � rk(x) for every open neighborhood U of x.

The classical Mazurkiewicz–Sierpiński theorem [7] claims that every countable compact scattered space X

is homeomorphic to the space ωβ · n+ 1 with the order topology, where β = ht(X) and n = |X(β)| is finite.
We shall consider scattered compact spaces of that form.

We finally note two simple properties of disjoint unions of IFS-attractors, which will be needed later.

Lemma 1. Suppose X =
⋃

i<n Xi is a metric space, where each Xi is compact and isometric to X0 and
dist(Xi, Xj) > diam(X0) for every i < j < n. If X is an IFS-attractor (consisting of weak contractions)
then so is X0.

Proof. Let {fi}ki=1 be an IFS such that X =
⋃k

i=1 fi(X). Note that if f is a weak contraction and
f(Xi) ∩ X0 �= ∅ then f(Xi) ⊂ X0, because diam(f(Xi)) < diam(Xi) = diam(X0) < dist(X0, Xj) for
j > 0. For each i let hi be an isometry from X0 onto Xi. Denote by S the set of all pairs (i, j) such that
fi(Xj) ⊂ X0. By the remark above, X0 =

⋃
(i,j)∈S fi(Xj). Thus, X0 is the attractor of an IFS consisting of

(weak) contractions of the form fi ◦ hj where (i, j) ∈ S. �
Lemma 2. Assume X = A∪B is a compact metric space, where A,B are clopen and disjoint IFS-attractors.
Then X is an IFS-attractor.

Proof. Given an IFS F , given k ∈ N, denote by Fk the collection of all compositions f1 ◦ f2 ◦ · · · ◦ fk, where
f1, . . . , fk ∈ F (possibly with repetitions). Then Fk is another IFS with the same attractor. Moreover, if
r = maxf∈F Lip(f) < 1 then rk � maxg∈Fk Lip(g).

We may assume that both sets A, B are nonempty and that 1 = diam(X). Let ε = dist(A,B). In view of
the remark above, we may find two iterated function systems F and G on A and B respectively, such that
A and B are their attractors, and the maximum of all Lipschitz constants of the contractions in F and G
is < 1

2ε. In particular, diam(h(A)) < 1
2ε whenever h ∈ F and diam(h(B)) < 1

2ε whenever h ∈ G.
Extend each f ∈ F to a map f ′ : X → X by letting f ′(B) = {pf}, where pf is any fixed element of f(A).

Observe that the Lipschitz constant of f ′ is � 1
2 , because given x ∈ A, y ∈ B, we have

d
(
f ′(x), f ′(y)

)
� diam

(
f(A)

)
<

1
ε = 1 dist(A,B) � 1

d(x, y).
2 2 2
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Fig. 1. The sequence K.

Similarly, extend each g ∈ G to a map g′ so that g′(A) = {pg}, where pg ∈ g(B). Again, g′ has Lipschitz
constant � 1

2 .
Finally, {f ′}f∈F ∪ {g′}g∈G is an IFS whose attractor is X. �
It is a natural question whether the converse to Lemma 2 holds. As we shall see later, this is not the

case.

3. Convergent sequences

In this section we construct a convergent sequence in the real line, which is not an IFS-attractor.
When we consider a sequence {xn}n∈N as a possible attractor of an iterated function system in R, we

identify that sequence with the closure {xn: n ∈ N}. We say that a sequence {xn}n∈N is an IFS-attractor if
so is {xn: n ∈ N}.

Every geometric convergent sequence is an IFS-attractor. For example the set {0}∪{ 1
2n }n∈N is an attractor

of IFS {f1(x) = x
2 , f2(x) = 1}. We will give an example of a convergent sequence which is not the attractor

of any IFS in R.

Theorem 1. There exists a convergent sequence K ⊂ R which is not the attractor of any iterated function
system in R consisting of weak contractions.

The construction of K is inspired by the example of a locally connected continuum which is not the
attractor of any IFS on R

2, constructed by Kwieciński [6].
We construct the sequence K as follows. The main building block is the set F (a, k), for a > 0 and k ∈ N,

defined by

F (a, k) =
{
ia

k
: i = 0, . . . , k − 1

}
.

Note that for every distinct x, y ∈ F (a, k) we have that d(x, y) � a
k > 0, therefore if d(x, y) < a

k , then x = y.
Now, let an = 1

3·2n−1 and kn = n(kn−1 + · · · + k1) where k1 = 1. Then

Fn = F (an, kn) + 1
2n−1 .

The set K (see Fig. 1) is defined to be the union

K = {0} ∪
∞⋃

n=1
Fn.

It is clear that K consists of a decreasing sequence and its limit point. Note that:

(1) the sequence {an

kn
}n∈N+ is decreasing;

(2) the sequence {dist(Fn, Fn+1)}n∈N+ is decreasing;
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(3) for all n ∈ N
+ we have

diamFn � an < dist(Fn, Fn+1).

The idea behind the construction of K is that weak contractions on that set behave in a specific way. In
particular we have the following

Lemma 3. For a weak contraction f : K → K either

f(Fn) ⊂ K \ (F1 ∪ · · · ∪ Fn) for all n ∈ N
+

or else the set f(K) is finite.

Proof. Let f be a weak contraction on K satisfying f(0) �= 0. This means that f(0) is an isolated point
of K. The function f is continuous, so there exists an open neighborhood U of 0, such that f(U) = {f(0)}.
Thus, the set f(K) = f(U) ∪ f(K \ U) is finite.

If f(0) = 0, for each n ∈ N
+ there exists x ∈ Fn such that d(0, x) = dist(0, Fn). Then d(0, f(x)) <

d(0, x) = dist(0, Fn) which implies f(x) ∈ K \ (Fn ∪ · · · ∪ F1) and by (3) we have

diam
(
f(Fn)

)
< diam(Fn) < dist(Fn, Fn+1) = dist

(
Fn,

∞⋃
i=n+1

Fi

)
.

This implies that f(Fn) ∩ (F1 ∪ · · · ∪ Fn) = ∅. �
Proof of Theorem 1. Suppose that K is the attractor of an iterated function system F = {f1, f2, . . . , fr}
consisting of weak contractions in R. That is, K =

⋃r
i=1 fi(K). By Lemma 3, we know that there are two

kinds of weak contractions f on K:

(i) f(K) is finite;
(ii) for all n ∈ N

+ it holds that f(Fn) ⊂ K \ (F1 ∪ · · · ∪ Fn).

Now we can write the set K as the union K =
⋃m

i=1 fi(K)∪S where m � r, the functions fi for i = 1, . . . ,m
satisfy (ii) and the set S =

⋃r
i=m+1 fi(K) is finite. This implies that

Fn ⊂
m⋃
i=1

fi(Fn−1 ∪ · · · ∪ F1) ∪ S.

Indeed, if x ∈ Fn then x = f(y) for some f ∈ F and y ∈ K. If f is of type (i) then x ∈ S. Otherwise
y ∈ Fn−1 ∪ · · · ∪ F1, because of (ii).

Since S is finite, for n big enough we have that Fn ⊂
⋃m

i=1 fi(Fn−1 ∪ · · · ∪ F1) so

kn = |Fn| �
∣∣∣∣∣
m⋃
i=1

fi(Fn−1 ∪ · · · ∪ F1)

∣∣∣∣∣ � m(kn−1 + · · · + k1).

But kn = n(kn−1 + · · · + k1) so for n > m we get a contradiction. �
In fact, every compact scattered space can be embedded topologically in the real line so that its image

is not the attractor of any IFS consisting of weak contractions. We prove the result below, using the same
idea as for the convergent sequence.
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Theorem 2. A compact scattered metric space with successor height can be embedded topologically in the real
line so that it is not the attractor of any iterated function system consisting of weak contractions.

Proof. First, we use the idea of the proof of Theorem 1 for the space homeomorphic to ωδ + 1, where
δ = α + 1 is a fixed successor ordinal.

Let us consider such space written as X = {0} ∪
⋃∞

n=1 Xn, where each space Xn is homeomorphic to
ωα + 1 and Xn ∩Xm = ∅ whenever n �= m. We can topologically embed the space X into the real line such
that:

• the spaces Xk are gathered in blocks {Fn}∞n=1 which accumulate to 0;
• each block Fn contains kn spaces of the form Xk;
• for every n � 1 it holds that

diam(Fn) � dist(Fn, Fn+1). (∗)

In other words, we take the convergent sequence constructed in the proof of Theorem 1 and replace each
point by a copy of ωα + 1, taking care that its diameter should be small enough, so that (∗) holds.

As in the proof of Theorem 1, we may show that there are two kinds of weak contractions f on X:

(i) either f(X) covers only finitely many sets Xn, or
(ii) for all n � 1 we have that f(Fn) ⊂ X \ (Fn ∪ · · · ∪ F1).

To show this dichotomy we have to use (∗) and the fact that it is impossible to cover the space X using
finitely many spaces of height < δ.

Now we can omit contractions of the first type, as in the proof of Theorem 1, and we observe that if X is
an IFS-attractor, then for n big enough we have that

Fn ⊂
m⋃
i=1

fi(Fn−1 ∪ · · · ∪ F1)

where fi for i = 1, . . . ,m satisfy (ii). Then

kn =
∣∣F (α)

n

∣∣ �
∣∣∣∣∣
(

m⋃
i=1

fi(Fn−1 ∪ · · · ∪ F1)
)(α)∣∣∣∣∣ � m(kn−1 + · · · + k1).

Now, taking n > m we get a contradiction by the definition of kn.
We have already shown that every space ωδ + 1 of successor height can be embedded topologically in

the real line so that it is not the attractor of any IFS. To show that each ωδ · n + 1 has the same property,
we place on the real line n isometric copies X1, . . . , Xn of the space constructed before (homeomorphic to
ωδ + 1) so that

diam(Xk) = diam(Xk+1) < dist(Xk, Xk+1)

for every k = 1, . . . , n− 1. By Lemma 1 we conclude that if X1 is not the attractor of any IFS then neither
is X = X1 ∪ · · · ∪Xn. �

We have proved Theorem 2 only for compact scattered spaces of successor height. It turns out that spaces
of limit height are never IFS-attractors, as will be shown in the next section.
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4. Scattered spaces of limit height

Theorem 3. A compact scattered metric space of limit Cantor–Bendixson height is not homeomorphic to any
IFS-attractor consisting of weak contractions. In particular, it is not a topological IFS-attractor.

Proof. Due to Mazurkiewicz–Sierpiński’s theorem, such a space is of the form K = ωδ · n + 1, where
δ = ht(K) > 0 is a limit ordinal. We assume that K has a fixed metric d and F is an IFS on K consisting
of weak contractions. Suppose that K =

⋃
f∈F f(K), so there exists a weak contraction f ∈ F such that

ht(f(K)) = δ. Consequently the set F1 = {f ∈ F ; ht(f(K)) = δ} is nonempty. Let F0 = F \ F1 and
μ = max({0} ∪ {ht(f(K)): f ∈ F0}). Then μ < δ. We will consider the Cantor–Bendixson rank rk(x) of
points with respect to the space K. Denote by D the set of points of rank δ. Note that the set D = K(δ) is
finite.

Claim 1. If f ∈ F1 then D ∩ f(D) �= ∅.

Proof. Suppose D∩f(D) = ∅, so for every x ∈ D the rank of f(x) is less than δ. Choose a neighborhood Vx

of f(x) such that Vx∩D = ∅. Then ht(Vx) < δ. Find a clopen neighborhood Wx of x such that f(Wx) ⊂ Vx.
Then ht(f(Wx)) is also less than δ. Define W =

⋃
x∈D Wx. Then the set f(K) = f(W ) ∪ f(K \ W ) has

height < δ, which gives a contradiction. �
We now come back to the proof of Theorem 3.
If the set D = {x0} is a singleton, then by Claim 1 we know that f(x0) = x0 for every f ∈ F1. Then

let � be such that δ > � > μ. It exists, because δ is a limit ordinal. In the case where the set D consists of
more than one element, there exists

ε = min
{
d(x, y): x �= y, x, y ∈ D ∪

⋃
f∈F1

f(D)
}

> 0.

Due to the fact that D = K(δ) =
⋂

�<δ K(�) there exists an ordinal � such that μ < � < δ and K(�) ⊂⋃
x∈D B(x, ε

2 ). Denote this set by A so

A = K(�) =
{
x ∈ K: rk(x) � �

}
⊂

⋃
x∈D

B

(
x,

ε

2

)
.

It is clear that A is closed in K and A \D is nonempty set because δ is a limit ordinal number. Define

α = sup
x∈A

dist(x,D) > 0.

The set A is compact, so there exists an element a ∈ A such that dist(a,D) = α and � � rk(a) < δ. It
means that for every open neighborhood U of a we have ht(U) � rk(a) � �.

Note that for f ∈ F1 if a ∈ f(K), then distance between set f−1(a) and set D is greater than α. Indeed
for each x ∈ f−1(a) there exist x0, a0 ∈ D such that d(x, x0) = dist(x,D) and d(a, a0) = dist(a,D) = α.
We first do the case f(x0) ∈ D. Then we have

d(x, x0) > d
(
f(x), f(x0)

)
= d

(
a, f(x0)

)
� dist(a,D) = α.

In the case f(x0) /∈ D the set D has more than one element. Note that α � ε
2 , because A ⊂

⋃
x∈D B(x, ε

2 ).
Moreover d(a0, f(x0)) � ε by the definition of ε. Then by the weak contracting property of f and by the
triangle inequality we have
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d(x, x0) > d
(
a, f(x0)

)
� d

(
a0, f(x0)

)
− d(a, a0) � ε− α � ε

2 � α.

Consequently dist(x,D) > α for every x ∈ f−1(a).
Thanks of that we can find a clopen neighborhood U of a, such that f−1(U) ∩ A is empty for every

f ∈ F1. It implies that ht(f−1(U)) < �.
The space K is an attractor of IFS F , so we have U =

⋃
f∈F f(f−1(U)). For f ∈ F0 it holds

ht(f(f−1(U))) � ht(f(K)) � μ < �. For f ∈ F1 we know that ht(f(f−1(U))) � ht(f−1(U)) < �. We
finally have a contradiction by applying the fact that

ht(U) = max
f∈F

{
ht
(
f
(
f−1(U)

))}
< �.

This completes the proof. �
5. Scattered spaces of successor height

Recall that every countable scattered compact space is homeomorphic to an ordinal ωβ · n + 1, with the
order topology. We start with the case n = 1.

Theorem 4. For every ε > 0 and every countable ordinal δ the scattered space ωδ+1 + 1 is homeomorphic
to the attractor of an iterated function system consisting of two contractions {ϕ,ϕδ+1} in the unit interval
I = [0, 1], such that

max
(
Lip(ϕ),Lip(ϕδ+1)

)
< ε.

To prove this theorem we shall use the notion of a monotone ladder system. We shall denote by LIM(α)
the set of all limit ordinals � α.

Definition 1. Let α be an ordinal. A monotone ladder system in α is a collection of sequences {cαn(β): n ∈ N;
β ∈ LIM(α)} such that

• for each ordinal β ∈ LIM(α) the sequence {cαn(β)}n∈N is strictly increasing and converges to β when
n → ∞;

• for every β, γ ∈ LIM(α) if β � γ then cαn(β) � cαn(γ) for every n ∈ N.

We shall need monotone ladder systems for our construction. Their existence is rather standard, we give
a proof for the sake of completeness.

Lemma 4. For every countable ordinal α there exists a monotone ladder system in α.

Proof. We prove that lemma by transfinite induction on limit ordinals � α. Setting cωn(ω) = n, we obtain
a monotone ladder system in ω.

Now suppose that α is a limit ordinal and for all limit ordinals α′ < α there exists a monotone ladder
system {cα′

n (β): n ∈ N; β ∈ LIM(α′)} in α′. We have to construct such a system in α.
If α = α′ + ω then

cαn(β) = cα
′

n (β) for every β ∈ LIM
(
α′)

and
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cαn(α) = α′ + n.

It is obvious that this is a monotone ladder system in α.
Now suppose that α is a limit ordinal among limit ordinals and choose a strictly increasing sequence

{αn}n∈N such that α0 = 0, αn ∈ LIM(α) for n > 0 and α = supn∈N αn.
Given a limit ordinal β < α there exists a natural number n0 such that αn0 < β � αn0+1. Let

c̄n(β) = max
(
αn0 , c

αn0+1
n (β)

)
.

Note that {c̄n(β): n ∈ N; β ∈ LIM(α), β < α} is a monotone ladder system: for any limit ordinals β � γ < α

there exist n0,m0 ∈ N such that αn0 < β � αn0+1 and αm0 < γ � αm0+1. If n0 < m0 then for all n ∈ N

c̄n(β) � αn0+1 � αm0 � c̄n(γ).

If n0 = m0 then by the inductive hypothesis for αn0+1 we have

c̄n(β) = max
(
αn0 , c

αn0+1
n (β)

)
� max

(
αm0 , c

αm0+1
n (γ)

)
= c̄n(γ).

Now we construct a monotone ladder system in α as follows. For every β < α and n ∈ N define

cαn(β) = min
(
αn, c̄n(β)

)
and cαn(α) = αn.

Note that for every limit ordinals β � γ � α, if γ < α then cαn(β) � cαn(γ) because {c̄n(β): n ∈ N; β ∈
LIM(α), β < α} was monotone. If γ = α then cαn(β) = min(αn, c̄n(β)) � αn = cαn(α). This means that
{cαn(β): n ∈ N; β ∈ LIM(α)} is indeed a monotone ladder system in α.

Note that for any limit ordinal α, its monotone ladder system is also a monotone ladder system in every
successor ordinal β, such that α < β < α + ω. �
Proof of Theorem 4. Fix a countable ordinal δ. We have to construct an IFS-attractor homeomorphic to
the space ωδ+1 + 1. By Lemma 4 there exists a monotone ladder system for δ′ = δ + ω. Then for every
ordinals α � δ define a sequence {αn}n∈N such that

• if α is a limit ordinal, we put αn := cδ
′

n (α);
• if α is a successor ordinal, we put αn := cδ

′
n (α + ω).

Note that for every α, β � δ if α � β then αn � βn for all n ∈ N.
Let r > 3. For a natural number n consider the affine homeomorphism

sn(x) = x

rn
+ 1

rn
.

Now for every ordinal α � δ+1 we construct scattered compact sets Lα,Kα ⊂ I, homeomorphic to ωα +1,
as follows:

1. L0 = {0};
2. Lα = L0 ∪

⋃
αn<α sn(Lαn

) ∪
⋃

αn�α sn(Lα′) for α = α′ + 1 successor ordinal;
3. Lα = L0 ∪

⋃∞
n=1 sn(Lαn

) for a limit ordinal α.

Now define

(a) K0 = L0;
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Fig. 2. The spaces Kα.

Fig. 3. An example of Lα where α = α′ + 1 and α2 < α � α3.

(b) Kα+1 = K0 ∪
⋃∞

n=1 sn(Kα);
(c) Kα = Lα for a limit ordinal α. (See Figs. 2 and 3.)

Each of these spaces consists of blocks contained in sn(I), each block is a space of a lower height and they
accumulate to 0.

Now we make the following definition of an iterated function system {ϕ,ϕδ+1} such that
ϕ(Kδ+1) ∪ ϕδ+1(Kδ+1) = Kδ+1. We use the contraction

ϕ(x) = x

r

that shifts every block contained in sn(I) onto the next block, contained in sn+1(I). In particular

ϕ(Kδ+1) = Kδ+1 \ s1(Kδ).

Now we define ϕδ+1 = s1 ◦ fδ where fδ is defined below, with the use of additional functions gα. Namely,
for every α � δ we define

(1) g0 =
{

0, x ∈ [0, 2
r ],

r
r−2 (x− 2

r ), x ∈ (2
r , 1];

(2) gα(x) =

⎧⎨
⎩

sn(gαn
(s−1

n (x))), x ∈ sn(I) and αn < α, n � 1,
sn(gα′(s−1

n (x))), x ∈ sn(I) and αn � α, n � 1,
x, otherwise

whenever α = α′ + 1 is a successor ordinal;
(3) gα = fα for α a limit ordinal.

Finally, define

1. f0 = g0;

2. fα+1(x) =
{
sn(fα(s−1

n (x))), x ∈ sn(I), for some n � 1,
x, otherwise;

3. fα(x) =
{
sn(gαn

(s−1
n (x))), x ∈ sn(I), for some n � 1,

x, otherwise
for a limit ordinal α. (See Fig. 4.)
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Fig. 4. The functions f0 and f1 for r = 4.

Note that every function fα and gα is continuous and Lip(fα) = Lip(gα) = r
r−2 , so

Lip(ϕδ+1) = Lip(s1) · Lip(fδ) = 1
r − 2 < 1.

Moreover max(Lip(ϕ),Lip(ϕδ+1)) = 1
r−2 thus for every ε > 0 we can find r > 3, such that 1

r−2 < ε.
Now we show that for every ordinals α, β � δ the following properties hold:

(A) gα(Lβ) = Lα when α � β;
(B) fα(Kα+1) = Kα.

Proof of property (A). The proof is by transfinite induction on β. For β = 0 it is true that g0(L0) = L0.
In the second step we assume that for every β′ < β and each α′ � β′ it holds that gα′(Lβ′) = Lα′ . Let

us consider four cases where α � β. Note that in each case αn � βn for all n ∈ N.

Case 1. α and β are limit ordinals (in particular αn ↗ α and βn ↗ β). Then by the inductive hypothesis

gα(Lβ) = L0 ∪
∞⋃

n=1
sn

(
gαn

(Lβn
)
)

= L0 ∪
∞⋃

n=1
sn(Lαn

) = Lα.

Case 2. α = α′ + 1 and β is a limit ordinal. Then βn ↗ β and again using the inductive hypothesis, we get

gα(Lβ) = L0 ∪
⋃

αn<α

sn
(
gαn

(Lβn
)
)
∪

⋃
αn�α

sn
(
gα′(Lβn

)
)

= L0 ∪
⋃

αn<α

sn(Lαn
) ∪

⋃
αn�α

sn(Lα′) = Lα.

Case 3. α is a limit ordinal and β = β′ + 1. Then αn ↗ α and every αn < β′. Thus

gα(Lβ) = L0 ∪
⋃

βn<β

sn
(
gαn

(Lβn
)
)
∪

⋃
βn�β

sn
(
gαn

(Lβ′)
)

= L0 ∪
⋃

βn<β

sn(Lαn
) ∪

⋃
βn�β

sn(Lαn
)

= L0 ∪
∞⋃

sn(Lαn
) = Lα.
n=1



1900 M. Nowak / Topology and its Applications 160 (2013) 1889–1901
Case 4. α = α′ + 1 and β = β′ + 1. Then

gα(Lβ) = gα

(
L0 ∪

⋃
βn<β

sn(Lβn
) ∪

⋃
βn�β

sn(Lβ′)
)

= L0 ∪
⋃

αn<α,βn<β

sn
(
gαn

(Lβn
)
)
∪

⋃
α�αn,βn<β

sn
(
gα′(Lβn

)
)

∪
⋃

αn<α,β�βn

sn
(
gαn

(Lβ′)
)
∪

⋃
α�αn,β�βn

sn
(
gα′(Lβ′)

)
.

For each of the unions above we can use the inductive hypothesis and we get

gα(Lβ) = L0 ∪
⋃

αn<α

sn(Lαn
) ∪

⋃
αn�α

sn(Lα′) = Lα,

which completes the proof of property (A). �
Proof of property (B). Once again we use transfinite induction. For α = 0 it is obvious that f0(K1) = K0,
because K1 ⊂ [0, 2

r ] = f−1
0 (K0). Therefore, if α = α′ + 1, then by the inductive hypothesis

fα(Kα+1) = K0 ∪
∞⋃

n=1
sn

(
fα′(Kα′+1)

)
= K0 ∪

∞⋃
n=1

sn(Kα′) = Kα.

If α is a limit ordinal then, using property (A), we get

fα(Kα+1) = K0 ∪
∞⋃

n=1
sn

(
gαn

(Kα)
)

= K0 ∪
∞⋃

n=1
sn

(
gαn

(Lα)
)

= K0 ∪
∞⋃

n=1
sn(Lαn

) = Kα,

which completes the proof of property (B). �
Finally, we show that the scattered space Kδ+1 is the attractor of {ϕ,ϕδ+1}. Indeed, using property (B)

we obtain that

ϕ(Kδ+1) ∪ ϕδ+1(Kδ+1) =
(
Kδ+1 \ s1(Kδ)

)
∪ s1

(
fδ(Kδ+1)

)
=

(
Kδ+1 \ s1(Kδ)

)
∪ s1(Kδ) = Kδ+1.

This finishes the proof of Theorem 4. �
The space ωα · n+ 1 can be represented as the union of n disjoint copies of ωα + 1. In view of Lemma 2,

such a space is an IFS-attractor whenever it is properly embedded into the real line (or some other metric
space).

Summarizing:

Corollary 1. A countable compact space X is a topological IFS-attractor if and only if its Cantor–Bendixson
height is a successor ordinal. If this is the case, then X is homeomorphic to an IFS-attractor in the real
line.

As we have already mentioned, taking the space ωω+1 + 1, we obtain an example of a countable IFS-
attractor with a clopen set (homeomorphic to ωω + 1) that is not a topological IFS-attractor.
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